
TTK-20-24
P3H-20-041
FR-PHENO-2020-11
MITP/20-044

Integral Reduction with Kira 2.0 and
Finite Field Methods

Jonas Klappert∗,a, Fabian Lange†,a, Philipp Maierhöfer‡,b, and Johann
Usovitsch§,c

aInstitute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,
52056 Aachen, Germany

bPhysikalisches Institut, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
cPRISMA Cluster of Excellence, Institut für Physik,

Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany

We present the new version 2.0 of the Feynman integral reduction program
Kira and describe the new features. The primary new feature is the reconstruc-
tion of the final coefficients in integration-by-parts reductions by means of finite
field methods with the help of FireFly. This procedure can be parallelized on
computer clusters with MPI. Furthermore, the support for user-provided systems
of equations has been significantly improved. This mode provides the flexibility
to integrate Kira into projects that employ specialized reduction formulas, di-
rect reduction of amplitudes, or to problems involving linear system of equations
not limited to relations among standard Feynman integrals. We show examples
from state-of-the-art Feynman integral reduction problems and provide bench-
marks of the new features, demonstrating significantly reduced main memory
usage and improved performance w.r.t. previous versions of Kira.

∗E-mail: klappert@physik.rwth-aachen.de
†E-mail: flange@physik.rwth-aachen.de
‡E-mail: philipp.maierhoefer@physik.uni-freiburg.de
§E-mail: jusovits@uni-mainz.de

ar
X

iv
:2

00
8.

06
49

4v
1 

 [
he

p-
ph

] 
 1

4 
A

ug
 2

02
0

mailto:klappert@physik.rwth-aachen.de
mailto:flange@physik.rwth-aachen.de
mailto:philipp.maierhoefer@physik.uni-freiburg.de
mailto:jusovits@uni-mainz.de


Contents

1 Introduction 1

2 Preliminaries 1
2.1 Feynman integral reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Finite field and interpolation techniques . . . . . . . . . . . . . . . . . . . . . 3

3 New Features in Kira 2.0 5
3.1 Finite field reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 User-defined systems of equations . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3 Iterative reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Master equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Sectors in big-endian binary notation . . . . . . . . . . . . . . . . . . . . . . . 9
3.6 Setting all integrals in a sector to zero . . . . . . . . . . . . . . . . . . . . . . 10
3.7 Export reduction rules with kira2file . . . . . . . . . . . . . . . . . . . . . . . 10
3.8 Factor out prefactors with FireFly . . . . . . . . . . . . . . . . . . . . . . . . 10
3.9 General propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.10 Add sectors for preferred master integrals . . . . . . . . . . . . . . . . . . . . 12
3.11 Generate a system of equations for later reduction as user-defined system . . 12

4 Benchmarks 13
4.1 Runtime reduction with bunches and MPI . . . . . . . . . . . . . . . . . . . . 13
4.2 Reducing the memory footprint with iterative reduction . . . . . . . . . . . . 15
4.3 Combining algebraic forward elimination with finite field reduction . . . . . . 16
4.4 Double-pentagon topology in five-light-parton scattering . . . . . . . . . . . . 17

5 Installation 19
5.1 Obtaining Kira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.3 Compiling Kira with the Meson build system . . . . . . . . . . . . . . . . . . 21
5.4 Compiling Kira with the Autotools build system . . . . . . . . . . . . . . . . 23

6 Conclusions 23

i



1 Introduction

At the Large Hadron Collider, the high energy regime of the Standard Model is probed with
ever increasing accuracy. To meet the precision requirements for many scattering processes,
it is indispensable to calculate the cross sections for these processes to high accuracy, often
at next-to-next-to-leading order, or, in some cases, even higher [1]. The common strategy
to deal with the occurring Feynman integrals in such calculations is to first express all
integrals in terms of a basis of master integrals. This so-called reduction is furthermore a
key ingredient in many methods to calculate the master integrals themselves [2–6].

In the last few years, new techniques have been explored and applied to integral reduc-
tion problems, employing syzygy equations [7–12], algebraic geometry [13–15], intersection
numbers [16–20], finite field and interpolation techniques [21–26], or special integral repre-
sentations [27–30]. But unfortunately, there is still no general algorithm known that directly
reduces a given set of integrals in a target-oriented manner. Hence, in most cases the La-
porta algorithm [31] remains the method of choice. Several public implementations of the
algorithm exist [32–35], and the implementations are continuously improved to be able to
handle increasingly complicated reduction problems.

In this article we present the version 2.0 of Kira, a Feynman integral reduction program
based on Laporta’s algorithm that was first introduced in [35]. The most prominent new
feature is the application of finite field methods to reconstruct the coefficients appearing in
the integral reduction formulas with the help of FireFly [24, 26]. In many cases this leads
to reduced main memory usage and, depending on the underlying problem, also to reduced
overall runtime. Furthermore, the reduction can be parallelized on computer clusters using
MPI [36]. Pre-release versions of Kira 2.0 have already been successfully used in several
projects [37–39].

This article is organized as follows. In section 2 we introduce some definitions used through-
out in this article and briefly discuss Feynman integral reduction and finite field methods
for the reconstruction of multivariate rational functions. In section 3 we describe the new
features of Kira 2.0 and how to use them. Benchmarks of the new features are presented
in section 4. Section 5 explains how to obtain, compile, and install Kira. We conclude in
section 6.

2 Preliminaries

2.1 Feynman integral reduction

The primary application of Kira is the reduction of Feynman integrals. Here we introduce
the notation and conventions used throughout in this publication. A general Feynman
integral can be parametrized as

T (a1, . . . , aN ) =
∫ ( L∏

i=1
dd`i

)
1

P a1
1 P a2

2 · · ·P
aN
N

, (1)
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where Pj = q2
j − m2

j , j = 1, . . . , N , are the inverse propagators (omitting the Feynman
prescription). The momenta qj are linear combinations of the loop momenta `i, i = 1, . . . , L
for an L-loop integral, and external momenta pk, k = 1, . . . , E for E + 1 external legs (or
E = 0 for vacuum integrals), and mj are the propagator masses. The aj are the (integer)
propagator powers. The set of inverse propagators must be complete and independent
in the sense that every scalar product of momenta can be uniquely expressed as a linear
combination of the Pj , squared massesm2

j , and external kinematical invariants. The number
of propagators is thus N = 1

2(L+ 2E + 1) including auxiliary propagators that only appear
with aj ≤ 0.

Integrals of the form (1) for different values of aj are in general not independent. Integration-
by-parts (IBP) identities [40,41] and Lorentz-invariance (LI) identities [42], as well as sym-
metry relations lead to linear relations between them. These identities can be used to express
all integrals through linear combinations of master integrals, which serve as a basis.

Kira employs a variant of the Laporta algorithm [31]: IBP, LI, and symmetry relations
are generated for different values for the aj , resulting in a linear system of equations. This
system of equations is then systematically solved with a Gauss-type elimination algorithm
to express integrals which are regarded more complicated in terms of simpler integrals.

To systematically classify integrals, first, integrals are assigned to so-called topologies based
on their respective sets of propagators, i.e. their momenta and masses. Multiple topologies
are handled by assigning a unique topology ID to each topology. Furthermore, each integral
is assigned a sector

S =
N∑

j=1
2j θ(aj − 1

2), (2)

where θ(x) is the Heaviside step function. A sector S is called subsector of another sector
S′ (with propagators powers a′j) if S < S′ and aj ≤ a′j for all j = 1, . . . , N . We denote
as top-level sectors those sectors which are not subsectors of other sectors that contain
Feynman integrals occurring in the reduction problem at hand. As a measure of complexity
it is useful to define the number

t =
N∑

j=1
θ(aj − 1

2), (3)

of propagators with positive power, the sum r of all positive powers, and the negative sum
of all non-positive powers s,

r =
N∑

j=1
ajθ(aj − 1

2), s = −
N∑

j=1
ajθ(1

2 − aj). (4)

These values are used as limits in the choice of the sets aj for which the IBP, LI, and
symmetry relations are generated. The sets of aj are chosen such that r ≤ rmax and
s ≤ smax, where rmax, and smax are chosen large enough to cover all relevant integrals in
the reduction process, but usually no larger.

Symmetry relations either relate integrals within the same sector, or between two different
sectors of the same or different topologies. In case of a symmetry between two sectors, each
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integral can be expressed as a linear combination of integrals in the respective other sector.
Hence, master integrals may only appear in that sector which is considered simpler in the
chosen ordering of sectors. In case of a relation between two topologies, integrals are always
mapped from the topology with higher ID to the one with lower ID, which is in that sense
considered simpler.

2.2 Finite field and interpolation techniques

Integral reductions with the Laporta algorithm [31] for state-of-the-art problems are usually
very expensive in terms of required CPU time and also main memory usage. This is due to
the huge number of equations in the system to solve, the growth of intermediate expressions
while solving the system, and the size of the rational functions that appear as coefficients.
In particular, the coefficients of intermediate results are typically more complicated than
those appearing in the final result. Simplifying those coefficients by algebraic means, e.g.
with Fermat [43], is very time consuming and memory intensive.

These problems can be mitigated by solving the system over finite fields [44]. In practice,
one uses prime fields Zp with characteristic p, where p is the defining prime. Because of the
64-bit architecture of modern CPUs, p is usually chosen to be a large 63-bit prime (so that
the sum of two elements of Zp still fits into 64 bits). One can then replace all variables in
the system by integers in Zp and perform all operations modulo p. This way, all coefficients
are mapped to 64-bit integers, independent of the size of the original rational functions.
On one hand this reduces the memory needed for the coefficients, and on the other hand,
arithmetic operations on Zp are performed in constant time, independent of the size of the
original coefficients, utilizing the CPU’s native integer operations.

These methods have already been used in the first version of Kira to eliminate linearly
dependent equations from the system [45]. This reduces the size of the system which has
to be solved algebraically and already leads to significant performance improvements. Fur-
thermore, if a list of integrals is provided that should be reduced, the information gathered
in this step can be used to select only those equations which are needed to reduce the in-
tegrals from this list. In Kira, this procedure is implemented in the software component
pyRed [35]. Once the selection of the equations is done, the system is solved analytically,
employing algebraic simplifications of the rational functions.

However, it is also possible to avoid the algebraic solution altogether and reconstruct the
analytic result from the solutions over finite fields by employing interpolation and rational
reconstruction techniques [46], as suggested in Ref. [21] in the context of IBP reductions.1
Efficient algorithms for the interpolation of polynomials and rational functions from their
images in a finite field have been studied in computer science for several decades, see e.g.
Refs. [46–53]. The variables of the rational function are replaced by members of the finite
field and the function is evaluated at this point, i.e. for each tuple of values for the variables
one obtains the image of the rational function at this point. These evaluations are called
probes. The rational function is then interpolated by processing a sufficient number of probes

1For the related strategy based on generalized unitarity, the usage of advanced techniques from computer
science has been pioneered in Ref. [22].
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so that one obtains the rational function over the chosen prime field. Note that all coefficients
in the numerator and denominator polynomials are, of course, mapped to the finite field.
The rational function with rational numbers in Q as coefficients can be reconstructed with
the help of rational reconstruction (RR) algorithms [54, 55]. Based on the image of the
rational number in Zp and the prime number p of the field, these algorithms can “guess” the
rational number in Q. They only succeed if both numerator and denominator of the rational
number are significantly smaller than p. However, this guess is unique if they succeed. The
limit on the size can be circumvented by combining the images over several prime fields with
the help of the Chinese remainder theorem (CRT) [56]. It combines the images of a rational
number over two coprime numbers to a new image over a new coprime which is the product
of both input coprimes. Thus, the upper limit in the RR is increased. It is important to
note that most of the algorithms are probabilistic, i.e. there is a chance that they fail or
provide a wrong result. Most of the failures are triggered by hitting accidental zeros with
a probability based on the Schwartz-Zippel lemma [47, 57]. The probability of obtaining a
wrong result can be reduced by performing additional checks after the termination of the
algorithms.

The general strategy can be summarized as follows. The system of equations is repeatedly
solved over a prime field. Each solution results in a probe for each master integral coeffi-
cient. These are then handed to a rational function interpolation algorithm. This procedure
is repeated until all rational functions have been interpolated over the prime field. Their
coefficients are then passed to a RR algorithm to obtain the rational functions with coeffi-
cients in Q. If the RR did not succeed, the same process is repeated over additional distinct
prime fields, and the results are combined with the help of the CRT until the RR succeeds.
FIRE6 was the first public program implementing this strategy [23]. However, it is currently
limited to problems with d and two scales, of which one has to be set to one. It uses a
factorization strategy which still has to be generalized to more scales.

While the simplification of rational functions can be performed in parallel to some degree,
limited by their interdependencies, the evaluations of probes on a finite field are completely
independent, opening the possibility for massive parallelization on many CPU cores and
even nodes of a computer cluster.

Last year, two general purpose C++ libraries implementing both interpolation and RR algo-
rithms have been published, namely FireFly [24, 26], which we chose to use in Kira, and
FiniteFlow [25]. FireFly requests pyRed to solve the system of equations repeatedly over
the finite fields for different tuples of values of the variables and then processes the result-
ing probes until the master integral coefficients are successfully reconstructed over Q. The
input system is the same system as for the algebraic reduction. Particularly, it is already
trimmed of the linearly dependent equations and of the equations which are not relevant for
the selected integrals. Exactly as in the algebraic reduction, the system is trimmed again
after the forward elimination, i.e. the equations which are no longer relevant are dropped.
However, in contrast to the algebraic reduction, we only select the relevant master integral
coefficients after the back substitution as suggested in Ref. [24]. Hence, the interpolation
of irrelevant (but potentially difficult) rational functions is avoided. This selection does not
offer any advantage in the algebraic reduction because all intermediate coefficients need to
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be known in order to calculate the final result. In Sect. 4, we show some benchmarks of this
newly implemented approach.

Interestingly, the forward elimination is usually the dominant part of a reduction over a
finite field, whereas in an algebraic solution it is usually the other way round. Hence, we
implemented a second strategy which first performs the forward elimination using algebraic
simplifications for the coefficients, and then performs the back substitution over the finite
field, reconstructing the result with FireFly as suggested in Ref. [24]. In Sect. 4.3, we
present an example which heavily profits from this strategy.

3 New Features in Kira 2.0

The following usage instructions extend those from the original Kira publication [35] if not
stated otherwise.

3.1 Finite field reduction

The central new feature of using the interpolation and reconstruction techniques described
in Sect. 2.2 can be enabled with the option run_firefly in the job file. The option comes
in two variants: run_firefly: true imports the entire system of equations (stored in the
files tmp/[topology]/SYSTEM_*) and performs the full reduction. run_firefly: back on
the other hand performs just the back substitution. Hence, it requires the triangular system
calculated by run_triangular (stored in the files tmp/[topology]/VER_*) in the same or
a previous run.

Per default, FireFly performs the factor scan (see Ref. [26] for details) for reductions with
three or more variables. The default behaviour can be overwritten with the job-file option
factor_scan: <true|false>.

FireFly offers the possibility to calculate several probes at once by combining several coef-
ficients for different values of the variables in a coefficient array. This reduces the overhead
due to traversing the system during its solution for the price of moderately increased main
memory usage. We refer to Ref. [26] for more details on the implementation. This behaviour
can be enabled by the new command line option --bunch_size=n, which sets FireFly’s
maximum bunch size to n.

Lastly, run_firefly supports additional parallelization with MPI [36], where the additional
nodes are used as workers to compute the probes required by the main node which carries out
the interpolation. Each process uses its own thread pool for multithreading. See Ref. [26]
for more details. This feature is automatically enabled when FireFly is installed with MPI
support enabled (see Sect. 5). Usually, Kira can then be invoked with MPI by

mpiexec -n <n> [other MPI options] kira <job_file> [kira options]
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where <n> is the number of processes to be started and <job_file> is a usual Kira job file
with FireFly enabled. The details of course depend on the MPI implementation available
on the system. Since the different processes have to communicate with each other, the best
performance is obtained by assigning all cores of a machine to a single process of Kira with
the --parallel command-line option. MPI should only be used for multiple machines.

The benchmarks in Sect. 4 show how the different variants of the option run_firefly
behave.

Especially on systems with older versions of glibc2 we strongly recommend to use a library
like jemalloc [58] that replaces the malloc function by an implementation that is optimized
for high performance memory allocation under multithreaded workloads (see Sect. 5).

3.2 User-defined systems of equations

Since Kira 1.2 it has been possible to use Kira to solve a system of linear equations provided
by the user. This functionality has been significantly improved and extended. The option
to provide the system of equations reads

input_system: {files: [<file1>,<file2>,...], otf: <true|false>,
size: <n>, config: <true|false>}

where the specification of size, otf, and config is optional.

• It is now possible to provide several files at once. Files may optionally be compressed
with gzip. It is also possible to pass the names of directories, in which case all regular
files with the file extension .kira resp. .kira.gz within these directories are used.

• With otf: true (default: false), the “on-the-fly solver” is used, i.e. each equation
is passed to the solver immediately after it is parsed, yielding reduced main mem-
ory usage and slightly reduced runtime. If this option is used, it is crucial that the
equations in the files are approximately ordered by complexity, starting with simpler
equations, where simpler refers to the most complicated integral in the equation. The
system doesn’t have to be strictly ordered, but equations of similar complexity should
be close to each other, otherwise the runtime may increase drastically. Files are read
in the order in which they are passed to the files option. In case of a directory, the
files in the directory are ordered lexicographically by their names.

• If the option otf is used, the option size can be used to give the total number of
equations. If size is omitted, the files will be read once in advance to determine the
number of equations, which costs some extra time, and a second time to solve them.

• If the option config: true is set (default: true), the topology definitions from the
config directory will be used. Otherwise not. If config: false, the variables oc-
curring in the coefficients are determined automatically. Besides the integral notation
with a topology name and a list of integer indices, it is now possible to directly use

2A notable example are most computer clusters with Intel CPUs.
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64-bit integral weights (described below). This circumvents the limitation that, at
least in the case of a single-indexed topology, the number of integrals per topology is
limited to 232.

Of course, user-defined systems can be used together with FireFly. Note that the old
format for the option input_system, where only a single file name can be given, still works,
but is considered deprecated.

User-defined weights

Internally, Kira represents every integral by a 64-bit unsigned integer. This “integral weight”
serves as a measure of complexity of an integral. The higher the weight, the more com-
plicated the integral in the chosen ordering. When dealing with user-provided systems of
equations, it is now possible for the user to choose the weights of the objects in the equa-
tions manually. This simply works by using 64-bit unsigned integers everywhere, where
previously only integrals with a topology name and indices (like, e.g. T[2,1,1]) could be
used. An equation file with user-defined weights may look as in the following example:

# three equations with user-defined weights
18084767254708224*(-4)
18014398510530560*(d)

19140298417373185*(-2+d)
18014398510530560*(-4)

20266198324215809*(-4+d)
19140298417373185*(-4)

This file contains three equations, each of length two, separated by empty lines. It is implied
that the expression for each equation equals zero. User-defined weights may have values
from 0 to 264 − 2. The weight 264 − 1 is reserved for internal purposes.

Note that the option preferred_masters cannot be used together with user-defined weights.
However, it is straight forward to choose a preferred basis manually by assigning sufficiently
low weights to the preferred masters. Linear combinations as basis elements or entire am-
plitudes can be easily handled by adding a corresponding equation. Note that the concept
of sectors is not defined for user-defined weights. I.e. that options like sectorwise forward
elimination or sectorwise iterative reduction (see Sect. 3.3) cannot be used.

3.3 Iterative reduction

In Kira 1.1 the option select_masters_reduction [59] was introduced to calculate only
the coefficients of a subset of master integrals, effectively setting all other master integrals
to zero. By setting certain integrals to zero, the size of the equations and hence the main
memory consumption is reduced. On the other hand, to achieve the full reduction, the
procedure must be repeated, possibly in parallel on several machines, until the coefficients

7



of all master integrals are known. However, the usage of this option is quite cumbersome.
The set of selected master integrals for each node has to be provided in the corresponding
job file for the node, and the databases with the partial reductions have to be merged
manually at the end [60].

With the option iterative_reduction, a similar and fully automated strategy for the
iteration over the master integrals is now available. The option comes in two variants:

iterative_reduction: masterwise

performs separate reductions for each master integral sequentially and

iterative_reduction: sectorwise

performs separate reductions for all master integrals in each sector sequentially. Iterative
reduction can be used both with run_back_substitution (i.e. Fermat) and run_firefly.
If MPI is used, the parallelization across several nodes is done at the level of each iteration
step, i.e. one master integral resp. sector at a time. run_back_substitution will create
separate databases for the partial reductions, i.e. per master integral or per sector. These
databases will be automatically merged into a single database with the full result once all
partial reductions are complete.

In combination with FireFly, another interesting effect comes into play. From experience
we know that the complexity of the coefficients in the reduction varies strongly between
different master integrals. Hence, for a master integral that comes with simple coefficients,
fewer probes (often by orders of magnitude) have to be calculated than for a master integral
with complicated coefficients. Moreover, equations that reduce integrals to zero, because
all master integrals appearing in the reduction are set to zero, can be removed from the
system in the respective iteration step. While these effects increase the performance of
the reduction, the increased overhead due to solving the system many more times has the
opposite effect.

The primary use case for this feature is to decrease the required amount of main memory.
It is difficult to predict the effect on the performance. In Sect. 4.2, we show an example
where the memory usage is reduced significantly, but the overall runtime increases. Usu-
ally, sectorwise should be preferred over masterwise unless the further reduced memory
consumption is crucial for being able to run the reduction at all on the available machines.

3.4 Master equations

In some cases it can be useful to treat linear combinations of integrals as basis elements,
i.e. as if they were master integrals. The most prominent example occurs in the context
of systems of coupled differential equations for master integrals, where a convenient basis
choice can lead to a particularly simple form of the differential equations [2, 3].
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Effectively, Kira handles such linear combinations by introducing a new integral-like object
with a small weight (in the sense of the integral ordering) that serves as a master inte-
gral, and adding an equation to the system that equates this object with the given linear
combination. Hence, we refer to these equations as master equations. Master equations
are defined similarly to preferred master integrals, using the same input file. The following
example illustrates the syntax to define linear combinations:

# A master equation with 3 elements
box[1,1,1,1]*(1)
box[1,1,1,2]*(s)
box[1,2,1,1]*(s)

# A master equation with 1 element
box[0,1,0,1]*(s)

# Two individual preferred masters. No empty line needed in between,
# i.e. the notation from Kira 1.1 is still accepted.
box[1,0,1,0]
box[1,0,0,2]

Note that the factor 1 in the first master equation is required to indicate that the in-
tegral box[1,1,1,1] is part of a linear combination. Like with usual preferred master
integrals, the file with the chosen basis is passed to Kira in the job file with the option
preferred_masters: "basisFile", where basisFile is the name of the file in which the
basis is defined.

All master equations are enumerated starting with 1 and represented as BASISLC[n], where
n is the number of the master equation in the order in which they are defined in the preferred
basis file.

3.5 Sectors in big-endian binary notation

Kira supports sectors in the big-endian binary notation both in the job file and in the
integralfamilies.yaml file. One can just replace the sector in the previous notation by
the big-endian binary notation, e.g.

top_level_sectors: [b111111100]

The first letter b is important. It tells Kira’s parser that the following numbers belong
to the big-endian binary notation. In the example above the big-endian binary notation is
defined for integrals with 9 propagators. The first 7 propagators are in the denominator
and the last two are the irreducible scalar products in the numerator.
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3.6 Setting all integrals in a sector to zero

With the option zero_sectors it is possible to set entire sectors, i.e. all integrals be-
longing to these sectors, to zero. All sectors passed to this option will be added to the
automatically determined list of trivial sectors. The option can be set per topology in the
file integralfamilies.yaml, e.g. zero_sectors: [b111111100] to set sector 127 of the
respective topology to zero.

3.7 Export reduction rules with kira2file

Kira can export results in formats readable by Mathematica and FORM with the options
kira2math and kira2form. Additionally, the results can now be exported in the format
that is compatible with the input format of user-defined systems of equations (see Sect. 3.2).
I.e. files exported in this format can be used as input in further Kira runs.

3.8 Factor out prefactors with FireFly

Recently, algorithms and tools have been published that make it possible to determine
the denominators of all coefficients in the result of the reduction without performing a
full reduction [61–63]. When the denominators are known, they can be divided out of
the coefficients, so that only the numerators, i.e. polynomials instead of rational functions,
remain. This not only reduces the number of terms which have to be interpolated by a factor
of roughly two (assuming that numerator and denominator are of similar complexity), but
moreover simplifies the interpolation, because polynomial interpolation algorithms can be
used instead of the much more involved algorithms for rational functions.3 Of course, the
interpolation also simplifies if numerators or partial factors are known and divided out.

With the option insert_prefactors, Kira can load a list of prefactors when run_firefly
is used. During the interpolation with FireFly, the results of the reductions over finite fields
are divided by these prefactors. In the final result, all factors are restored. Each prefactor
has to be assigned to the integral in whose reduction it appears and the master integral
from whose coefficient it is divided out. This is done in a file, where in one line the integral
to be reduced is listed, followed by a factor that must always be one. In the following lines,
the master integrals are listed, one per line, followed the factors to be divided out of their
coefficients. Integrals and factors are separated by a multiplication symbol “*”. Example:

doublebox[1,1,1,1,1,1,1,1,-2,0,0] * 1
doublebox[0,0,1,0,0,1,1,0,0,0,0] * 1/((d-8)*(d-6)^3*(d-5)^3*(d-4)^3*...
doublebox[0,0,1,1,0,0,1,0,0,0,0] * 1/((d-8)*(d-6)^3*(d-5)^3*(d-4)^3*...
doublebox[0,0,1,1,0,1,1,1,0,0,0] * 1/((d-8)*(d-6)^2*(d-5)^2*(2*d-11)*...
...

3FireFly still performs the interpolation of a rational function for technical reasons. However, the additional
runtime to identify trivial denominators is marginal for multiscale problems.
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Here, in the reduction of the integral doublebox[1,1,1,1,1,1,1,1,-2,0,0], the coefficient
1/((d− 8)(d− 6)3(d− 5)3(d− 4)3 . . . will be divided out of the coefficients of the master in-
tegrals doublebox[0,0,1,0,0,1,1,0,0,0,0] and doublebox[0,0,1,1,0,0,1,0,0,0,0],
and 1/((d − 8)(d − 6)2(d − 5)2(2d − 11) . . . will be divided out of the coefficient of the
integral doublebox[0,0,1,1,0,1,1,1,0,0,0]. Several such prescriptions for different in-
tegrals to be reduced can be provided in a single file, separated by empty lines. As the
notation suggests, it is also possible to use rational functions as prefactors. The file name
is simply passed to the option insert_prefactors in the job file. The above example is
taken from examples/insert_prefactors with the prefactors listed in the file xints.

Note that usually such a factorization only works in a specific basis of master integrals. This
basis must then by chosen with the option preferred_masters. In the above example, the
proper basis is chosen in the file preferred.

3.9 General propagators

Some methods for the computation of Feynman integrals require more general propagators
than the usual form q2

j−m2
j [64–66]. Kira now offers more freedom to define the propagators.

For example, one can define the propagator (x(q2
1 −m2

1) + (1 − x)(q2
2 −m2

2))2 obtained by
the combination of two propagators into a one-dimensional Feynman-parameter integral
according to

1
(q2

1 −m2
1)(q2

2 −m2
2)

=
1∫

0

dx 1
(x(q2

1 −m2
1) + (1− x)(q2

2 −m2
2))2 . (5)

As the following example shows, defining general propagators is straight forward:

integralfamilies:
- name: "box"

loop_momenta: [k1]
top_level_sectors: [b1110]
propagators:

- [ "k1^2 + 2*k1*p1 + p1^2 + (-m2 - 2*k1*p1 - p1^2)*x", 0 ]
- [ "(k1+p1+p2)^2-m2", 0 ]
- [ "(k1+p1+p2+p3)^2", 0 ]
- [ "k1^2", 0 ]

The full example can be found in examples/general_propagators. Here, all four propa-
gators are defined using the notation for general propagators. However, whenever possible,
we recommend to use the standard notation with the unsquared propagators momentum.
The reason is that Kira is currently not able to apply symmetry relations to integrals with
general propagators in the numerator (i.e. with negative powers).

For compatibility with the format used in Reduze 2 [33], it is also possible to define a
propagator as
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- { bilinear: [ [ "l3", "q1" ], 0 ] }

meaning that the propagator has the form l3 · q1 (see example example/aah-nl-sing).

In particular, these notations can be used to define propagators in which loop momenta
appear only linearly, e.g. in HQET (see e.g. [67]). The different notations can be mixed in
the same topology definition.

3.10 Add sectors for preferred master integrals

Kira now ensures that for each integral listed in preferred_masters, a system of equations
will be generated in the sector to which this integral belongs, even if the sector is not
requested for reduction in the job file. The limits for r and s (see Eqs. (4)) are chosen
based on values from the job file. If only a single topology is reduced, the effect is the
same as if the sector is requested for reduction with the respective values of r and s. But if
several topologies are reduced, this is the only way to include this sector together with the
symmetry related sectors of lower topologies that are generated to map the master integrals
across topologies.

One possible application of this feature is to find magic relations, i.e. relations originating
from higher sectors that reduce the number of master integrals [68], in lower topologies
w.r.t. the currently reduced topology. An example to illustrate the effect in case of a single
topology can be found in examples/magic_relations.

3.11 Generate a system of equations for later reduction as user-defined system

The option generate_input: {level: <n>} with <n>=0 generates the system of equations
for the given seeds, selects a linearly independent subsystem and writes the equations into
files in the directory input_kira. The integrals are represented as integer weights, and
the generated files are suitable to be read with the option input_system using the on-
the-fly solver (see Sect. 3.2). If <n> is an integer ≥ 1, a system of equations will be
generated for each subsector of the chosen top-level sector with <n> lines less, and one for
the remaining sectors. One possible application is to reduce the amount of memory (often
by more than 50 %) that is needed to generate the entire system and for the selection of
linearly independent equations. The generation time on the other hand will be significantly
longer, though. Note that at this point it is not possible to select subsystems of equations
to solve specific integrals (e.g. with select_mandatory_list). However, this can be done
in a further run, where the generated system is solved as a user-defined system.

The option amplitude_translate reads a linear combination of integrals from a file and
assigns an integer weight to it, representing the expression (usually an amplitude or a part
of it). Multiple amplitudes, separated by empty lines can be provided in the same file. All
integrals are converted into weights and the result is written into a file in the directory
input_kira in the form of an equation that can be added to a system of equations that is
solved with the option input_system. The weight of the object representing the expression
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will be 264−1 for the first expression, counting downwards if further expressions are defined.
These weights can be used to refer to the expressions e.g. with select_mandatory_list.

An example is provided in examples/aah-nl-sing.

4 Benchmarks

In this section we present benchmarks for the new features in Kira 2.0. The numbers,
especially the runtime, should be read with uncertainties of a few percent in mind. These
are caused by using different nodes on a computer cluster, which are nominally equal but of
course behave slightly differently due to a difference in the quality of the CPUs and thermal
effects. Moreover, the IO operations are performed on the cluster filesystem with fluctuating
performance depending on the overall workload on the entire cluster.

4.1 Runtime reduction with bunches and MPI

p2 P6

P7

P2

P1

P5 q1

p1 P4 P3
q2

Figure 1: The non-planar double box topo5 which occurs, e.g., in virtual corrections to
single top production at NNLO.

To illustrate the impact of the overhead reduction with the --bunch_size command-line
option and the scaling with several nodes utilizing MPI, we chose the IBP reduction of the
topology topo5 shown in Fig. 1 with the propagators

P1 = k2
1, P2 = k2

2, P3 = (q2 − k1)2, P4 = (p1 − k2)2,

P5 = (q1 + k1)2 −m2
1, P6 = (q1 + k1 − k2)2 −m2

1,

P7 = (q1 − p2 + k1 − k2)2 −m2
2, P8 = (k1 − p1)2, P9 = (k2 − q2 − p2)2,

(6)

where P8 and P9 are auxiliary propagators. The scalar products of the external momenta
can be expressed through the kinematical invariants by

p2
1 = p2

2 = q2
2 = 0, q2

1 = m2
2, (p1 + p2)2 = s,

(q2 − p1)2 = t, (q2 − p2)2 = m2
1 − s− t.

(7)

This example can be found in examples/topo5. We perform the reduction with r = 7
and s = 4, which is sufficient for the virtual NNLO corrections to the amplitude of single
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top production. This results in about 1.6million probes in total over four prime fields to
complete the reduction. The runtime of the probes is dominated by the forward elimination
with a contribution of 97%. The calculations were performed on cluster nodes equipped
with two Intel Xeon Platinum 8160 processors with 24 cores each and 192GiB of RAM in
total with hyper-threading disabled. topo5 has also been studied in Ref. [26] with emphasis
on FireFly’s options.

In Tab. 1, we vary the maximal bunch size of FireFly with the command-line option
--bunch_size as described in Sect. 3.1. In general, the runtime decreases at the cost of

Table 1: Reduction of topo5 with r = 7, s = 4 utilizing FireFly, i.e. run_firefly:
true, and the command-line option --bunch_size. As a comparison we present
the algebraic reduction with Kira and Fermat, i.e. using run_triangular: true and
run_back_substitution: true.

--bunch_size= Runtime Memory
CPU time
per probe

CPU time
for probes

1 18 h 40GiB 1.73 s 95%
2 14 h 41GiB 1.30 s 94%
4 11 h 46GiB 1.00 s 93%
8 10 h 15min 51GiB 0.91 s 92%
16 9 h 45min 63GiB 0.85 s 92%
32 9 h 30min 82GiB 0.84 s 92%
64 9 h 30min 116GiB 0.83 s 92%

Kira ⊕ Fermat 82 h 147GiB - -

additional memory, as expected. Increasing the bunch size from 1 to 2 costs about 1GiB
of additional RAM but already decreases the runtime by roughly 25% by speeding up the
average time to solve the system for one data point with pyRed by a similar percentage. The
step to a bunch size of 4 again yields a runtime decrease of 20% but already costs 5GiB.
In the following steps, the gain in runtime becomes smaller while the amount of additional
memory required increases faster. Note that this example is mainly limited by the cost of
computing probes with pyRed as shown in the last column, i.e. the internal calculations in
FireFly only play a minor role. The share of the probes at the total CPU time for the
reduction only decreases marginally.

In Tab. 2, we show the behaviour of the reduction of topo5 when using multiple nodes
with Intel R© MPI [69]. The additional nodes are used as pure workers solving the IBP
system with pyRed as described in Sect. 3.1. They require about 9GiB of RAM. Doubling
the number of cores yields a speed-up of 1.8. Using three nodes increases the speed-up to
2.5 and four to 3.1. Going to five nodes, the speed-up only marginally increases further to
3.3. Therefore, using even more nodes does not seem to be worthwhile for this example.
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Table 2: Reduction of topo5 with r = 7 and s = 4 utilizing FireFly, i.e. run_firefly:
true, and multiple nodes with MPI. The speed-up is measured with respect to the reduction
with bunch size 1 in Tab. 1. As a comparison we show the algebraic reduction with Kira
and Fermat using run_triangular: true and run_back_substitution: true.

# nodes Runtime Speed-up CPU efficiency

1 18 h 1.0 95%
2 10 h 15min 1.8 87%
3 7 h 15min 2.5 82%
4 5 h 45min 3.1 76%
5 5 h 30min 3.3 65%

Kira ⊕ Fermat 82 h - -

However, the calculation is still limited by computation of the probes since the percentage
of the CPU time for the probes does not vary much. On the other hand, the CPU efficiency
drastically decreases, i.e. some of the cores are idle for some time during the calculation.
The reason behind this are the algorithms implemented in FireFly, which cannot process
arbitrary probes. Instead, new probes are scheduled based on intermediate results. This
is especially relevant for the first prime field, where the structure of the functions is not
known yet. For more details, we refer to Refs. [24, 26].

Thus, both features can be used to significantly decrease the runtime of reductions which are
limited by the evaluations of the probes. Bunches should be used if there is unused memory
on the system, MPI if there are more computers or cluster nodes available. As already
mentioned in Sect. 3.1, one should not use MPI when only using a single machine, mainly
because one thread is reserved solely for communication. Of course, both features can also
be combined if enough resources are available. It might also be worthwhile to monitor a
long and difficult calculation and adapt the settings to the current status, e.g. by increasing
the number of nodes when the prime field changes, because all probes are queued in the
beginning, and decreasing the number when FireFly only interpolates the coefficients. In
Sect. 4.4 we show an example which is mainly limited by the interpolation with FireFly
and, thus, the potential speed-up by increasing the bunch size or by using MPI is relatively
small, because both features effectively reduce the wall clock time to compute the probes.

4.2 Reducing the memory footprint with iterative reduction

The iterative reduction described in Sect. 3.3 can be used to reduce the memory footprint
by setting master integrals to zero, either all except one master integral (“masterwise”) or
all master integrals except those in one sector at a time (“sectorwise”). We again study
topo5 as an example on the same machines with two Intel Xeon Platinum 8160 processors
with 24 cores each and 192GiB of RAM in total with hyper-threading disabled. As shown
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in Tab. 3, the required memory reduces by more than a factor of 4 for the reduction with
FireFly when using the sectorwise iterative reduction. However, the runtime increases by

Table 3: Sectorwise iterative reduction of topo5 with r = 7 and s = 4 utilizing FireFly,
i.e. run_firefly: true.

Mode Iterative Runtime Memory

Kira ⊕ FireFly
- 18 h 40GiB

sectorwise 33 h 15min 9GiB

80% in this example.

4.3 Combining algebraic forward elimination with finite field reduction

Our next benchmark is an example from the study of conformal integrals in position space
with the propagators4

P1 = k2
1, P2 = k2

2, P3 = k2
3, P4 = (p1 − k1)2, P5 = (p1 − k2)2,

P6 = (p1 − k3)2, P7 = (p2 − k1)2, P8 = (p2 − k2)2, P9 = (p2 − k3)2,

P10 = (k1 − k2)2, P11 = (k1 − k3)2, P12 = (k2 − k3)2.

(8)

The top-level sector is 4095, i.e. all propagators may appear with positive powers. The scalar
products of the external momenta can be expressed through new variables z and zb:

p2
1 = zzb, p2

2 = 1, p1p2 = (1− z)(1− zb). (9)

We chose r = 17 and s = 0 for the benchmark.

The reductions are performed on a machine with two Intel Xeon Gold 6138 with 20 cores
each and 768GiB of RAM in total with hyper-threading enabled. Tab. 4 compares different
strategies for the reduction. The initialization is already quite expensive, especially in
terms of memory. The reduction with FireFly is completely limited by the calculation of
the probes. Even though the total number is rather small compared to other problems,
the 370 s for each probe are extremely expensive. 98% of this time is spent on the forward
elimination. However, the forward elimination can be performed in just 36min by the
algebraic mode of Kira. Using this result as starting point for FireFly significantly speeds
up the probes to 12 s and, therefore, the whole reduction. Moreover, the memory footprint
of the reduction improves significantly because the forward-solved system only consists of
572313 equations with 6144971 terms instead of 8922459 equations with 64009470 terms.
However, the number of distinct coefficients increases from 205 to 983420 more complicated
ones, because the forward elimination already partially solved the system. Thus, the time to
evaluate these coefficients for each probe increases from 0.002 s to 3.3 s. Moreover, the time

4 Many thanks to Raul João Pereira for this example.
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Table 4: Different strategies for the reduction of the topology defined by the propagators
in Eq. (8). The reduction specific values are r = 17 and s = 0. The option run_initiate
is used to initialise the system for all strategies, but is expensive enough to warrant a
separate entry in the table.

Mode Runtime Memory Probes
CPU time
per probe

CPU time
for probes

run_initiate 5 h 20min 128GiB - - -

run_triangular +
run_back_substitution

>14d ~ 540GB - - -

run_firefly: true 6 d 3 h 670GiB 108500 370 s 100%

run_triangular:

sectorwise
36min 4GiB - - -

run_firefly: back 4 h 54min 35GiB 108500 12.2 s 100%

for the back substitution increases from 6.7 s to 8.9 s, because Kira and pyRed use different
algorithms for the forward elimination and hence produce different triangular systems. Both
increases are still completely irrelevant compared to the time saved by using the forward-
solved system.

Thus, one should check whether the forward elimination can be computed algebraically to
speed up the calculation with FireFly. However, usually the coefficients of the system are
considerably more difficult after the forward elimination and are more expensive to parse
and evaluate. This can completely offset the gain, especially for multi-scale problems.

4.4 Double-pentagon topology in five-light-parton scattering

The double-pentagon topology that appears in the amplitude of five-light-parton scattering
at the two-loop level is illustrated in Fig. 2. There are five external momenta p1, . . . , p5
fulfilling p2

i = 0. All pi are assumed to be incoming, i.e.
∑

i pi = 0. The kinematical
invariants are defined by

s12 = (p1 + p2)2, s23 = (p2 + p3)2, s34 = (p3 + p4)2,

s45 = (p4 + p5)2, s51 = (p5 + p1)2.
(10)

Including d, the reduction of the double-pentagon topology is a six variable problem. By
setting s12 = 1 and restoring its dependence by dimensional analysis after the reduction, it
can be reduced to a five variable problem.
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Figure 2: The double-pentagon topology for five-light-parton scattering. The propagators
Pi are defined in Eq. (11).

The set of denominators describing the topology depicted in Fig. 2 is chosen as

P1 = l21, P2 = (l1 + p1)2, P3 = (l1 + p1 + p2)2, P4 = l22,

P5 = (l2 + p3)2, P6 = (l1 + l2 + p1 + p2 + p3)2, P7 = (l1 + l2 − p4)2,

P8 = (l1 + l2)2, P9 = (l2 + p1)2, P10 = (l2 + p2)2, P11 = (l2 + p4)2,

(11)

where the last three entries are auxiliary denominators. The system of equations used in
this reduction is taken from Ref. [30], which provides a system in block-triangular form.5
This form is much better suited for the reduction than a naive IBP system as generated,
e.g., by Kira. The coefficients appearing in the system are further processed by FireFly to
be cast in Horner form to optimize the evaluations.

We benchmark the reduction of all integrals including five scalar products. The reductions
are performed on a machine with two Intel Xeon Gold 6138 with 20 cores each and 768GiB of
RAM in total with hyperthreading enabled. The integral selection is done using the option
select_mandatory_list and we perform a numerical interpolation, i.e. run_firefly is set
to true. Hence, 2268 master integral coefficients have to be interpolated. Additionally,
we set the maximum bunch size to 128. Further simplifications are obtained by FireFly’s
factor scan. In total 19222 factors can be found of which 1930 are attributed to s23, 2176
to s34, 2046 to s45, 2306 to s51, and 10764 to d. The results of this benchmark are shown
in Tab. 5. The most complicated master integral coefficient has a maximum degree in

Table 5: Benchmark results for the reduction of the double-pentagon topology with the
configuration described in the main text.

Runtime Memory Probes
CPU time
per probe

CPU time
for probes

12 d 540GiB 38278000 0.37 s 25%

the numerator of 87 and in the denominator of 50 thus yielding a dense bound of roughly
5Note that Ref. [30] uses a different propagator definition than given in their ancillary files. The definition
in Eq. (11) matches the one given in the ancillary files.
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5.46 · 107 possible non-zero monomials. Fortunately, many of these are zero such that only
about 107 monomials contribute. Without the scan for factors, the maximum degree of the
denominator of the most complicated coefficient rises to 85. The database of the reduction
occupies 25GiB of disk space.

Although the number of required probes is comparably high, they can be computed relatively
fast due to the block-triangular structure obtained in Ref. [30]. However, the interpolation of
each coefficient is performed on a single thread and can become expensive in terms of runtime
as the number of monomials usually rises exponentially with the number of variables. Hence,
in this example, the runtime for the interpolation is dominating. Note that there are two
strategies to reduce the used memory of this calculation. On the one hand, the maximum
bunch size can be reduced. On the other hand, the option iterative_reduction with
masterwise or sectorwise can be used. By employing the latter option, the calculation
can be distributed manually (sector- or masterwise) on several machines to obtain a runtime
improvement in addition.

5 Installation

5.1 Obtaining Kira

A statically linked executable of Kira for Linux x86_64 is available from our web page at
https://kira.hepforge.org. This executable has all optional features included except for
MPI. If you require MPI, you must compile Kira yourself against the MPI version used on
your computer cluster.

The source code of Kira is available from our Git repository at GitLab under the URL
https://gitlab.com/kira-pyred/kira. To obtain the source code of the latest release
version, clone the repository with

git clone https://gitlab.com/kira-pyred/kira.git -b release

checking out the release branch. Release versions are also available as Git tags (e.g.
kira-2.0). The master branch of the repository contains the latest pre-release version,
receiving more frequent updates with new features and fixes. To obtain the source code of
the latest pre-release version, clone the repository with

git clone https://gitlab.com/kira-pyred/kira.git

checking out the master branch. Packages of the release versions as compressed Tar archives
are available from https://kira.hepforge.org.
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5.2 Prerequisites

Platform requirements
Linux x86_64 or macOS.

Compiler requirements
A C++ compiler supporting the C++14 standard and a C compiler supporting the C11 stan-
dard.

Build system requirements
Kira can either be built with the Meson build system [70] version 0.46 or later and
Ninja [71], or with the Autotools build system [72].

We recommend to use the Meson build system. If Meson is not available on your system, it
can be installed into your home directory as non-root user with

pip3 install --user meson

(requires Python 3.5 or later). This will install Meson to ~/.local/bin.

The Ninja binary (and source code) is available from https://ninja-build.org.

Dependencies
Kira requires the following packages to be installed on the system:

• GiNaC [73–75], which itself requires CLN [76],

• zlib [77].

• Fermat [43] is required to run Kira.

If the Fermat executable is not found automatically at startup, or a specific Fermat installa-
tion should be used, the path to the Fermat executable can be provided via the environment
variable FERMATPATH.

Depending on the enabled optional features of Kira, the following packages are required in
addition:

• GMP [78] if FireFly is used,

• MPFR [79] if FLINT is used,

• an MPI [36] library (disabled by default) for parallelization on computer clusters,

• jemalloc [58] (disabled by default) for more efficient memory allocation.

The following dependencies can be automatically built and installed as subprojects with the
Meson build system, i.e. if they are not found on the system, they will be built automatically
along with Kira:

• yaml-cpp [80] (required),
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• FireFly [26] (optional, enabled by default). If you decide to install FireFly manually,
we recommend to use the version from the branch kira-2 of the Git repository at
https://gitlab.com/firefly-library/firefly. This branch will remain compat-
ible with Kira 2.0.

• FLINT [81] (optional, enabled by default). We recommend using FLINT, because it not
only offers better performance for the finite field arithmetic, but is also required to
enable some features of FireFly, most notably the factor scan.

If the Autotools build system is used, all enabled dependencies must be installed manually.
If FireFly is not build as a subproject, to use FLINT and MPI, they must be enabled in
FireFly’s CMake build system.

Note that GiNaC, CLN, yaml-cpp, and FireFly must have been compiled with the same
compiler which is used to compile Kira. Otherwise the linking step will most likely fail. If
you are using the system compiler, you can usually install GiNaC, CLN, and yaml-cpp via
your system’s package manager. However, if you are using a different compiler, this usually
means in practice that you also have to build these packages from source and, if installed
with a non-default installation prefix, the environment variables C_PATH, LD_LIBRARY_PATH
and PKG_CONFIG_PATH must be set accordingly.

5.3 Compiling Kira with the Meson build system

To build Kira with the Meson build system, Meson 0.46 (or later) and Ninja are required.
If Meson and Ninja are not available on your system, see paragraph “Build system require-
ments” in Sect. 5.2.

To compile and install Kira, run

meson --prefix=/install/path builddir
cd builddir
ninja
ninja install

where builddir is the build directory. Specifying the installation prefix with --prefix is
optional.

Build options

• -Dfirefly=false (default: true): Build without FireFly support.

• -Dflint=false (default: true): If FireFly is built as a subproject, disable FLINT.

• -Dmpi=true (default: false): If FireFly is built as a subproject, enable MPI. This is
known to work best with OpenMPI [82, 83]. For performance reasons, we recommend
MPICH [84], though.
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• -Dcustom-mpi=<name>: If your MPI installation provides a pkg-config file, but is not
found automatically with -Dmpi=true, pass the name of the MPI implementation as
<name>, e.g. -Dcustom-mpi=mpich. Some systems don’t provide a pkg-config file for
MPICH. In that case we recommend to install FireFly with its own CMake build system
instead.

• -Djemalloc=true (default: false): Link with the jemalloc memory allocator [58].
This can lead to significantly increased performance, often by more than 20 % from
our experience if FireFly is used. However, using jemalloc may not work on
some systems, especially in combination with certain MPI implementations.6 Alterna-
tively, to use jemalloc, one can set the environment variable LD_PRELOAD to point to
jemalloc.so and export it.

To show the full list of available build options, run meson configure in the build directory.

Subprojects
If yaml-cpp or FireFly are not found on the system, per default they will be downloaded
and built as Meson subprojects. If the option -Dflint=true (default) is set and FireFly is
built as a subproject, also FLINT will be downloaded and built as a subproject if it is not
found on the system.

The usage of subprojects can be controlled with the following options:

• --wrap-mode=nodownload: Do not download subprojects, but build them if already
available (and not found on the system).

• --wrap-mode=nofallback: Do not build subprojects, even if the libraries are not
found on the system.

• --wrap-mode=forcefallback: Build subprojects even if the libraries can be found on
the system.

• --force-fallback-for=<deps>: Like forcefallback, but only for dependencies in
the comma separated list <deps>. Overrides nofallback and forcefallback.

These options are only fully supported with Meson 0.49 or later. For details see
https://mesonbuild.com/Subprojects.html.

Note: Subprojects are not updated automatically. To update subprojects, run

meson subprojects update

(requires Meson 0.49 or later). Git subprojects can of course also be manually updated by
running git pull in the corresponding subproject directory (e.g. subprojects/firefly).

6 This can depend on subtleties like the linking order of the jemalloc and MPI libraries.
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5.4 Compiling Kira with the Autotools build system

First run

autoreconf -i

and then compile and install with

./configure --prefix=/install/path --enable-firefly=yes
make
make install

where the optional --prefix argument sets the installation prefix. Without the option
--enable-firefly=yes, Kira will be built without FireFly support. Note that subproject
installation is not supported with the Autotools build system, i.e. all dependencies must
be installed manually.

6 Conclusions

In this article we presented the new version 2.0 of the Feynman integral reduction program
Kira. The major new features introduced in this release are the reconstruction of final
coefficients by means of finite field methods with the help of FireFly, and the parallelization
of this procedure on computer clusters with MPI. Besides many minor improvements and
extensions, the framework for the solution of user-provided systems of equations has been
extended to support most features available for integration-by-parts reductions.

We reproduced benchmarks from previous Kira publications, showing significantly increased
performance and reduced main memory consumption. Furthermore we provide new state-
of-the-art benchmark points to demonstrate the effect of various newly added features on
the computing resource requirements.
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